FURTHER INVESTIGATIONS OF THE MULTIPLE KNIFE-EDGE
ATTENUATION FUNCTION

L. E. Vogler*

The multiple knife-edge (MKE) attenuation function is
derived from Fresnel-Kirchhoff theory and compared with the
original derivation from Furutsu's generalized residue
series. It is shown that the two methods give complex attenua-
tions with the same absolute magnitude but differing in
phase. The analytical basis for an improved computational
procedure is developed that eliminates the changeover values
and abrupt discontinuities of attenuation inherent in the
original MKE computer program. A brief discussion of previous
MKE diffraction results is presented and an example comparison
js made with the Geometrical Theory of Diffraction and the
approximations of Epstein-Peterson and Deygout.
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1. INTRODUCTION

The purpose of this paper is to present further developments concerning the
multiple knife-edge (MKE) attenuation function that has been derived recently by
Vogler (1981, 1982). The MKE function is the basis for a computer program that
calculates attenuation over a propagation path that may consist of up to 10
knife-edges.

The original derivation started from a generalized residue series for
diffraction over a sequence of rounded obstacles developed by Furutsu (1963). It is
not at all obvious that the MKE function derived in this manner is the same as one
derived from Fresnel-Kirchhoff theory such as was used by Millington et al. (1962)
for double knife-edge diffraction. In fact, the complex attenuations of the two
methods differ in phase although their absolute values are equal. In Section 2 the
MKE function will be derived from Fresnel-Kirchhoff theory and an explicit
expression for the phase difference factor will be given.

Another aspect to be discussed in the present work concerns the numerical
evaluation of the MKE function. Attenuation values are obtained from a series whose
terms involve repeated integrals of the error function. As noted in the original
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paper (Vogler, 1981), certain limitations on the series could cause an abrupt
discontinuity in the attenuation as the height of a knife-edge was decreased. In
Section 3 an analysis of the problem is presented which leads to a means of
eliminating the discontinuities.

2, THE FRESNEL-KIRCHHOFF DERIVATION
The geometry associated with the knife-edge problem is shown in Figure 1. It
is assumed that the knife-edges are perfectly absorbing screens placed normal to the
direction of propagation and extending to infinity in both horizontal directions and
vertically downwards. For a path consisting of N knife-edges and two antenna
terminals with heights hm (above a reference plane) and with separation distances
I the diffraction angles 6, for em Small, can be approximated by
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In the application of Fresnel-Kirchhoff theory to MKE diffraction, elements of
the wavefront are formed in the aperture above each knife-edge and the assumption is
made that the field at any particular element arises solely from the total field
over the preceding aperture. Only spatial phase change effects are considered
significant and the usual condition is made that the separation distances are large
compared with the knife-edge heights and wavelength . Furthermore, because of
knife-edge symmetry in the horizontal direction (y-axis) and because factors
obtained by integrating with respect to y cancel out in forming the attenuation
(Millington et al., 1962), only phase differences in the plane of propagation are
required.

The path Tength between two points, P and Q, above adjacent knife-edges, m and
m+1l, minus the distance between knife-edges is
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where Xm denotes the vertical coordinates of the points.
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Assuming plane wave propagation and exp(iwt) time dependence, an element of
field strength dE at the receiver due to a particular path from the source can be

written as
dE « exp[-F)JdX;...dX, , (4)
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Applying Huygens' principle and integrating over each aperture, we find that the
total field is then

where K is an unknown constant.
The free-space field E0 is found from (6) by allowing the heights ho to
approach -«. The attenuation relative to the free-space field is then given by
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where, for convenience, we have introduced the notation
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and E(-«) is (8) with the Tower limits replaced by -c.
It appears, that (8) can be integrated in closed form only in certain special

cases, one of which is the free-space condition E(-»). To show this we first define
the function

1 (9)

m

Py 2 o2 _
= Ck-1 - ak_lck_za (k>2), Co =1, Cl
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Next, we make the change of variables
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and with the understanding that XN+1 = hN+1‘ Lower limits of the integrals in (8)
are given by
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Explicit expressions for v and Tm in terms of knife-edge heights and separation
distances are
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with R defined by (10). Notice that v = - when hy = oo



~

With the definitions (12), the function FN becomes
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where RN+1 is the total path distance from source to receiver along the reference
plane (see Figure 1). For free-space conditions, (8) is now easily integrated to
obtain
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and the attenuation (7) becomes
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where the lower limits are given by (14).

For N=1, (18) is the familiar single knife-edge attenuation function. For N=2
and h0=h3=0, (18) is equal to the conjugate of the double knife-edge attenuation
function given by equation (12) in Millington et al. (1962). The conjugate
relationship arises simply because of the different time dependence conventions
used.

The Fresnel-Kirchhoff formulation of MKE attenuation is easily expressed in
terms of the heights and separation distances of Figure 1 by applying relationships
(12) through (14) to equation (18). The result is
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and EN’ Cy» and @ are defined in (5)s (9), and (2) respectively.

The "Fresnel-Kirchhoff" MKE function given by (19) now can be related to the
"residue series" MKE function of the original derivation (Vogler, 1981) through the
following considerations. First we define the parameter
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and the lower 1imit of the new variable X is B
The exponent in (19) now becomes
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and & andBm are defined in (11) and (21). Finally, the attenuation in terms of

the variables A is given by

o=y T -F
EfE = (]/W)N/ZCNG ) N_[ ...J' e Ndx] e dxy (28)
81 "By

which is identical to the original derivation obtained from the residue series
except for the phase factor exp(-Oﬁ). (See equation (29) in Vogler (1981).)

The difference in phase arises from the fact that the reference free-space path
in the residue series derivation consists of the path segments connecting the tops
of the knife-edges, whereas the reference path in the present derivation is the
total distance along the reference plane (see Figure 1). It should be noticed that
the double knife-edge derivation of Millington et al. (1962) is restricted to the
condition that the source and receiver are the same distance from the reference
plane (h0=h3).

Numerical comparisons of double knife-edge diffraction by the method of Furutsu
(1963) and by the method of Millington et al. (1962) show that values of the complex
attenuation are the same in absolute value but differ in phase. The phase
difference is just the factor exp(-aé) where Oé is given by (26) with h0=h3=0.

As a knife-edge tends to -«, the resultant attenuation should agree both in
magnitude and phase with the attenuation that would be calculated without that
knife-edge. The use of RN+1 as the reference distance for the free-space field
assures this result, whereas a reference distance obtained by connecting the tops of
the knife-edges does not. Furthermore, in the application of the MKE diffraction to
actual radio propagation paths, the geometry of Figure 1 is more convenient than if
the reference base were the straight line connecting the tops of the antennnas.
Simple expressions that take into account the effects of earth curvature and atmos-
pheric refraction are available to calculate effective heights of terrain features
and the receiving antenna relative to the reference plane.

Although the attenuation as given by (19) is in a form more easily recognizable
geometrically, the expression in (28) is the one used to obtain numerical
evaluations of MKE attenuation. Further discussions on this subject are covered in
the next section,





